

US007479573B2

(12) United States Patent

Chu et al.

(54) TRANSFECTION REAGENTS

(75) Inventors: Yongliang Chu, Rockville, MD (US);

Malek Masoud, Gaithersburg, MD (US); Gulilat Gebeyehu, Potomac, MD

(US)

(73) Assignee: Invitrogen Corporation, Carlsbad, CA

(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 281 days.

(21) Appl. No.: 11/040,687

(22) Filed: **Jan. 21, 2005**

(65) Prior Publication Data

US 2005/0164391 A1 Jul. 28, 2005

Related U.S. Application Data

- (63) Continuation of application No. 09/438,365, filed on Nov. 12, 1999, now Pat. No. 7,166,745.
- (60) Provisional application No. 60/108,117, filed on Nov. 12, 1998.

(51)	Int. Cl.	
	C07C 211/62	(2006.01)
	C07C 211/63	(2006.01)
	C07C 211/64	(2006.01)
	A61K 31/13	(2006.01)
	A61K 9/127	(2006.01)
	A61K 9/50	(2006.01)
	C12N 15/88	(2006.01)

(56) References Cited

U.S. PATENT DOCUMENTS

2,654,785 A 2,695,314 A 2,867,665 A 2,901,461 A 3,152,188 A 3,324,182 A 3,369,905 A 4,143,003 A	11/1954 1/1959 8/1959 10/1964 6/1967 2/1968 3/1979	Miescher et al. 260/567.6 Kosmin 260/584 Dornfield 260/47 Auerbach et al. 260/47 Kirkpatrick 260/584 De Brunner et al. 260/583 Jones et al. 96/107 Haas et al. 96/107
4,143,003 A 4,235,871 A		Papahadjopoulos et al.

(Continued)

FOREIGN PATENT DOCUMENTS

AU 158967 2/1952

(Continued)

OTHER PUBLICATIONS

Banerjee et al., (2001) "Design, Synthesis, and Transfection Biology of Novel Cationic Glycolipids for Use in Liposomal Gene Delivery," J. Med. Chem., 44:4176-4185.

(10) Patent No.: US

US 7,479,573 B2

(45) **Date of Patent:**

Jan. 20, 2009

Asokan, A. and Cho, M.J. (2004), "Cytosolic Delivery of Macromolecules. 3. Synthesis and Characterization of Acid-Sensitive Bis-Detergents," Bioconj. Chem. 15:1166-1173.

Banerjee, R. et al. (1999), "Novel Series of Non-Glycerol-Based Cationic Transfection Lipids for Use in Liposomal Gene Delivery," J. Med. Chem. 42:4292-4299.

(Continued)

Primary Examiner—Brian J Davis (74) Attorney, Agent, or Firm—Invitrogen Corporation; Emanuel J. Vacchiano; James K. Blodgett

(57) ABSTRACT

Disclosed are compounds capable of facilitating transport of biologically active agents or substances into cells having the general structure:

$$(R_{2})_{m} \xrightarrow{\begin{array}{c} (R_{3})_{s} & (R_{6})_{y} & X_{a}^{-} \\ \downarrow & \downarrow & \downarrow \\ (A_{1})_{v} & (A_{2})_{w} \\ \downarrow & \downarrow & \downarrow \\ (R_{1})_{c} & (R_{4})_{v} & \end{array}} X_{a}^{-}$$

wherein

Q is selected from the group consisting of N, O and S; L is any bivalent organic radical capable of linking each Q, such as C, CH, $(CH_2)I$, or $\{(CH_2)i-Y-(CH_2)j\}k$, wherein Y is selected from the group consisting of CH₂, an ether, a polyether, an amide, a polyamide, an ester, a sulfide, a urea, a thiourea, a guanidyl, a carbamoyl, a carbonate, a phosphate, a sulfate, a sulfoxide, an imine, a carbonyl, and a secondary amino group and wherein Y is optionally substituted by $-X_1$ —L'— X_2 —Z or —Z; R_1 — R_6 , independently of one another, are selected from the group consisting of H,—(CH₂) p-D-Z, an alkyl, an alkenyl, an aryl, and an alkyl or alkyl ether optionally substituted by one or more of an alcohol, an aminoalcohol, an amine, an amide, an ether, a polyether, a polyamide, an ester, a mercaptan, an alkylthio, a urea, a thiourea, a guanidyl, or a carbamoyl group, and wherein at least one of R₁, R₃, R₄ and R₆ is a straight chain or branched, cyclic, alkyl, alkenyl, alkynyl or aryl group; and anyone of R₁, R₃, R₄ and/or R₆ may optionally be covalently linked with each other, with Y or with L when L is C or CH to form a cyclic moiety; Z is selected from the group consisting of amine, spermiyl, carboxyspermiyl, guanidyl, spermidinyl, putricinyl, diaminoalkyl, pyridyl, piperidinyl, pyrrolidinyl, polyamine, amino acid, peptide, and protein; X_1 and X_2 , independently of one another, are selected from the group consisting of NH, O, S, alkylene, and arylene; L' is selected from the group consisting of alkylene, alkenylene, alkynylene, arylene, alkylene ether, and polyether; D is Q or a bond; A₁ and A₂, independently of one another, are selected from the group consisting of CH₂O, CH₂S, CH₂NH, C(O), C{NH), C(S) and (CH₂)t; X is a physiologically acceptable anion; m, n, r, s, u, v, w and y are 0 or 1, with the proviso that when both m and n are 0 at least one of r, s, u and y is other than 0; i, j, k, l, p and are integers from 0 to about 100; q is an integer from 1 to about 1000; and a is the number of positive charge divided by the valence of the anion.